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Steady-state distributions of water potential and salt concentration in coastal aquifers
are typically modelled by the Henry problem, which consists of a fully coupled system
of flow and transport equations. Coupling arises from the dependence of water
density on salt concentration. The physical behaviour of the system is fully described
by two dimensionless groups: (i) the coupling parameter α, which encapsulates the
relative importance of buoyancy and viscous forces, and (ii) the Péclet number Pe,
which quantifies the relative importance of purely convective and dispersive transport
mechanisms. We provide a systematic analytical analysis of the Henry problem for a
full range of the Péclet number. For moderate Pe, analytical solutions are obtained
through perturbation expansions in α. This allows us to elucidate the onset of
density-driven vertical flux components and the dependence of the local hydraulic
head gradients on the coupling parameter. The perturbation solution identifies the
regions where salt concentration is most pronounced and relates their spatial extent
to the development of a convection cell. Next, we compare our solution to a solution
of the pseudo-coupled model, wherein flow and transport are coupled only via the
boundary conditions. This enables us to isolate the effects caused by density-dependent
processes from those induced by external forcings (boundary conditions). For small
Pe, we develop a perturbation expansion around the exact solution corresponding to
Pe = 0, which sheds new light on the interpretation of processes observed in diffusion
experiments with variable-density flows in porous media. The limiting case of infinite
Péclet numbers is solved exactly for the pseudo-coupled model and compared to
numerical simulations of the fully coupled problem for large Pe. The proposed
perturbation approach is applicable to a wide range of variable-density flows in
porous media, including seawater intrusion into coastal aquifers and temperature or
pressure-driven density flows in deep aquifers.

1. Introduction
Variable-density flow and transport in porous media have received increasing

attention in the literature as fluid density variations play an important role in many
environmental problems. One of the most significant environmental problems is that
of pollution of freshwater bodies by water with high concentrations of salts in dissolu-
tion. Salty water can come either from the sea (e.g. Custodio, Bruggeman & Cotecchia
1987) or from naturally occurring brines (e.g. Schelkes, Vogel & Klinge 2001; Herbert,
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Jackson & Lever 1988). High-density water can also result from landfill leachate and
irrigation practices (e.g. Simmons et al. 2002). Another area of interest falling under
the purview of variable-density flows is the problem of pollution by non-aqueous-
phase liquids (e.g. Taylor et al. 2001). All these problems concern flow in the shallow
subsurface. Other studies deal with density-driven flow in the deep subsurface, where
density differences are caused mainly by temperature or pressure. These variations
can be both natural and anthropogenic. One example of the latter arises from nuclear
fuel waste heat generation, which renders the study of variable-density flow relevant
to performance assessment analyses (e.g. Ophori 2004; Yang & Edwards 2000).

It is well known that variable-density flows in porous media can become unstable.
Instabilities and fingering develop when a denser fluid lies above a lighter fluid (e.g.
Manickam & Homsy 1995; Wooding, Tyler & White 1997). When lighter fluid is on
top, flow is stable and mixing is caused by diffusive and/or dispersive mechanisms (e.g.
Huppert & Woods 1995). This is the flow scenario that usually occurs during seawater
intrusion into coastal aquifers (e.g. Alkalali & Rostron 2003) and is the subject of
this study. This problem poses significant environmental and economical challenges
around the world (Panday et al. 1993; Smith & Turner 2001; Aliewi et al. 2001;
Paniconi et al. 2001) and has important water resources management implications
because relatively a small proportion of seawater (about 1 %) will render freshwater
unfit for drinking.

Seawater intrusion has been traditionally described by two alternative mathematical
models. The first approach assumes that a sharp interface separates the body of
fresh water from the intruding saltwater. By ignoring the existence of a transition
zone, this approach recasts the problem in terms of potential theory for interface
propagation. The use of its tools, such as conformal mapping, has led to a number of
analytical solutions (e.g. Bear & Dagan 1964; Huppert & Woods 1995; Naji, Cheng
& Ouazar 1998; Kacimov & Obnosov 2001), which provide invaluable insights into
the phenomenon. There exist, however, a plethora of physical conditions for which
the width of the transitional zone cannot be neglected.

The second approach, which we adopt here, accounts for the presence of the
transition zone resulting from the dynamic equilibrium of moving fresh- and saltwater.
The corresponding mathematical model consists of a system of the variable-density
(Darcy) flow equation and the advection–dispersion/diffusion equation. The two
governing equations are fully coupled through the dependence of water density on
salt concentration.

The intrinsic complexity of the coupled governing equations precludes the
development of closed-form analytical solutions even for simple geometries and
boundary conditions. This, in turn, has led to the proliferation of numerical codes,
many of which are reviewed in Bear et al. (1999). The absence of analytical solutions
and the relative scarcity of experimental data (Schincariol & Schwartz 1990; Oltean
et al. 2004) complicates the establishment of benchmark problems for testing the
accuracy and robustness of these numerical codes. Instead, numerical solutions are
compared to each other, and the differences between them can be quite significant
(Croucher & O’Sullivan 1995). Therefore, there is a need to provide analytical solutions
for specific problems that can be used for benchmarking (Weatherill et al. 2004).

This study is devoted to the analysis of the Henry problem (Henry 1964), which,
despite some reservations (Simpson & Clement 2003), remains one of the most widely
used benchmark problems. The importance of the Henry problem goes beyond
benchmarking, since it provides physical insight into transport processes associated
with seawater intrusion (Abarca et al. 2005). Available quasi-analytical solutions of
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the Henry problem (Henry 1964; Segol 1994) are based on a Galerkin method and
are rendered impractical by their slow rates of convergence. Typically, the Henry
problem is solved numerically (Pinder & Cooper 1970; Segol, Pinder & Gray 1975;
Galeati, Gambolati & Neuman 1992; Segol 1994), leading to quantitatively different
solutions (Croucher & O’Sullivan 1995).

In this study we present a new methodology to solve analytically the Henry problem
and other similar problems describing variable-density flows in porous media. Section 2
contains a mathematical formulation of the Henry problem and introduces relevant
dimensionless parameters. In § 3, we provide an exact solution for the flow problem
as a functional of the salt concentration, which serves as a basis for a perturbation
solution of the fully coupled system of variable-density flow equations for weak
density coupling (§ 4) and small Péclet numbers (§ 5). Section 6 studies flow and
transport in the opposite limit of large Péclet numbers. The limit of infinite Péclet
numbers, i.e. zero diffusion, corresponds to the case of a sharp interface between
fresh- and saltwater.

2. The Henry problem: steady-state flow and transport
2.1. Problem formulation

The Henry formulation of seawater intrusion describes the steady-state position of
a diffused saltwater wedge within a confined aquifer balanced against a flowing
freshwater field. Within this framework, fluid flow in porous media is governed by
the modified Darcy equation (e.g. Bear 1972),

u = − k

µ
{∇p + ρge3}, (2.1)

where u is the fluid flux, k is the intrinsic permeability of the porous medium, µ

is the viscosity of the fluid, p is pressure, g is gravitational acceleration, ρ is the
concentration-dependent density of the fluid, and e3 denotes the unit vector in the
vertical upward direction. In the absence of sources and sinks, fluid continuity in
steady state is expressed by

∇ · {ρu} = 0. (2.2)

The fluid density ρ varies with the salt concentration c, whose dynamics satisfy the
steady-state advection–diffusion equation (Henry 1964)

∇ · {uc − θD∇c} = 0, (2.3)

where D is the constant diffusion coefficient. For homogeneous porous media, both
permeability k and porosity θ are constant.

Equations (2.1)–(2.3) are closed by specifying a constitutive relationship ρ = ρ(c)
between the fluid density ρ and the salt concentration c. While a number of
such relationships exists (e.g. Holzbecher 1998; Diersch & Kolditz 2002), the linear
relationship

ρ = ρf

(
1 + ε

c

cs

)
(2.4)

originally used in Henry (1964) remains the most popular. Here cs is the concentration
of salt in seawater and

ε ≡ ρs − ρf

ρf

(2.5)

denotes the relative density contrast between the densities of freshwater (ρf ) and
saltwater (ρs). Note that c � cs and, hence, ρf � ρ � ρs .
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Figure 1. Illustration of the flow and transport scenario (after Croucher & O’Sullivan 1995).
Pressure is hydrostatic at the inland (x1 = 0) and sea (x1 =L) boundaries. The salt concentration
is zero at the freshwater boundary, and equal to the (constant) concentration Cs of salt in
seawater at the sea boundary. The top and bottom of the domain are impermeable.

For the usual range of temperatures in aquifers, the density of freshwater
is ρf = 103 kg m−3. The density of seawater generally increases with decreasing
temperature, increasing salinity, and increasing pressure. With a few exceptions,
the density of seawater at the surface of the sea/ocean varies between ρs = 1.020
and 1.029 kgm−3, with a worldwide average value of ρs ≈ 1.025 kg m−3. Thus, under
typical ocean conditions, ε = 1/40, and the Oberbeck–Boussinesq approximation (e.g.
Diersch & Kolditz 2002) is usually invoked to replace (2.2) with

∇ · u = 0. (2.6)

A justification is that the average direction of flow in steady aquifers is nearly
orthogonal to that of the density gradient, i.e. u · ∇ρ ≈ 0.

The Henry problem (Henry 1964) and its subsequent modifications (Segol 1994;
Croucher & O’Sullivan 1995) deal with the two-dimensional versions of equations
(2.1), (2.3), (2.4), and (2.6), which are defined on a vertical cross-section of an aquifer,
i.e. x ≡ (x1, x3)

T ∈ Ω , where Ω = [0, L] × [0, d] is a rectangle shown in figure 1. In
this formulation, the horizontal boundaries x3 = 0 and x3 = d are assumed to be
impermeable to both flow and transport. Freshwater enters the aquifer Ω through the
inland boundary x1 = 0 and discharges into the ocean through the coastal boundary
x1 = L. Saltwater enters the aquifer Ω through the coastal boundary x1 =L, advances,
and mixes with the discharging freshwater. This causes the formation of a diffused
transitional zone that separates freshwater from seawater.

An immediate consequence of this formulation is that both freshwater and mixed
water discharge into the ocean through the coastal boundary x1 =L. This is in contrast
to sharp-interface formulations, where the presence of the interface between fresh-
and saltwater gives rise to a vortex-like singularity on the x1 =L boundary. This issue
is discussed further in § 6.

The corresponding boundary conditions for flow equations (2.1) and (2.6) are as
follows. Fluid pressure p(x) is prescribed at the freshwater and saltwater boundaries,
where it is given by the pressure of hydrostatic saltwater. This yields

p(x1 = 0, x3) = p0 − ρf gx3, p(x1 = L, x3) = ρsg(d − x3) (2.7a)
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where p0 is the pressure at the bottom of the inland boundary. At the impermeable
top and bottom, the vertical component of the Darcian velocity u = (u1, u3)

T is zero,

u3(x1, x3 = 0) = 0, u3(x1, x3 = d) = 0. (2.7b)

The boundary conditions for transport equation (2.3) are as follows. At the
freshwater and sea boundaries the salt concentration is

c(x1 = 0, x3) = 0, c(x1 = L, x3) = cs, (2.8a)

respectively. At the impermeable horizontal boundaries, mass flux is zero,

∂c(x1, x3 = 0)

∂x3

= 0,
∂c(x1, x3 = d)

∂x3

= 0. (2.8b)

Note that the existence of a steady-state regime described by the Henry model
requires both that the diffused freshwater–saltwater interface be in dynamical
equilibrium with average sea level, and that temporal variations in the total flux
of freshwater be negligible. This steady-state situation of dynamical equilibrium does
occur in many coastal aquifers (e.g. Bear 1972; Bear et al. 1999).

The original Henry problem (Henry 1964) was formulated in terms of stream
functions. Henry implicitly imposed the inland boundary to represent hydrostatic
pressure by forcing the gradient of the stream function to be parallel to the boundary,
rather than specifying the reference pressure. Instead, the total flow rate across
the freshwater boundary was prescribed. Obviously there is a bijective monotonic
relationship between p0 and the total flow rate. Therefore our formulation is
equivalent to Henry’s. Specifically, neither formulations implies a uniform freshwater
flux across the upstream boundary, an unphysical assumption used in many numerical
simulations. In fact, one should expect the freshwater flux to be slightly larger at
the top than at the bottom of the boundary. While this difference is small for most
problems, it must be kept in mind when conducting detailed comparisons.

2.2. Freshwater head formulation

We start our analysis by reformulating the generalized Darcy law (2.1) in terms of
the equivalent freshwater hydraulic head

h =
p

ρf g
+ x3. (2.9)

Substituting (2.4) and (2.9) into (2.1) gives

u = −K

(
∇h + e3ε

c

cs

)
, K ≡ kρf g

µ
, (2.10)

where K is the hydraulic conductivity of a porous medium. Combining (2.6) and
(2.10) yields the flow equation written in terms of the freshwater head h,

∇2h = − ε

cs

∂c

∂x3

. (2.11)

In terms of hydraulic head (2.9), boundary conditions (2.7a) and (2.7b) are recast as
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h(x1 = 0, x3) =
p0

ρf g
≡ h0, h(x1 = L, x3) = d + ε(d − x3), (2.12a)

and

∂h(x1, x3 = 0)

∂x3

= −ε
c(x1, x3 = 0)

cs

,
∂h(x1, x3 = d)

∂x3

= −ε
c(x1, x3 = d)

cs

, (2.12b)

respectively.
Substituting (2.6) and (2.10) into (2.3) leads to the steady-state transport equation

expressed in terms of the freshwater head h,

K∇h · ∇c + K
c

cs

∂c

∂x3

+ θD∇2c = 0. (2.13)

Equation (2.13) is subject to the boundary conditions (2.8).

2.3. Dimensionless form of the governing equations

Next, we recast the governing equations (2.11) and (2.13) in a dimensionless form.
Let ξ =(ξ1, ξ3)

T and ζ denote the rescaled (dimensionless) spatial position vector the
dimensionless aquifer thickness,

ξ1 =
x1

L
, ξ3 =

x3

L
, ζ =

d

L
, (2.14)

respectively. This transformation maps the flow domain Ω = [0, L] × [0, d] onto
Ωd = [0, 1] × [0, ζ ]. From now on, ∇ is understood to operate with respect to
the dimensionless coordinates ξ . Dimensionless freshwater hydraulic head H , salt
concentration C and Darcy velocity U are defined by

H (ξ ) =
h(Lξ ) − d

	h0

, C(ξ ) =
c(Lξ )

cs

, U(ξ ) =
u(Lξ )L

K	h0

, (2.15)

where

	h0 = h0 − d (2.16)

is the global head difference imposed by the inland and sea boundaries in the absence
of density effects. Finally, we introduce dimensionless parameters

α =
εL

	h0

, Pe =
K	h0

θD
. (2.17)

With these definitions the dimensionless Darcy velocity U(ξ ) = (U1, U3)
T is given

by

U(ξ ) = −{∇H (ξ ) + e3αC(ξ )}. (2.18)

This leads to the dimensionless formulation of the salt transport equation (2.3),

U · ∇C − Pe−1∇2C = 0. (2.19)

The flow problem (2.11) and (2.12) becomes

∇2H (ξ ) = −α
∂C(ξ )

∂ξ3

(2.20)

subject to the boundary conditions

H (0, ξ3) = 1, H (1, ξ3) = α(ζ − ξ3), (2.21a)

∂H (ξ1, 0)

∂ξ3

= −αC(ξ1, 0),
∂H (ξ1, ζ )

∂ξ3

= −αC(ξ1, ζ ). (2.21b)
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Combining (2.18) and (2.19) recasts the transport problem (2.13) and (2.8) as

∇H (ξ ) · ∇C(ξ ) + αC(ξ )
∂C(ξ )

∂ξ3

+ Pe−1∇2C(ξ ) = 0 (2.22)

subject to the boundary conditions

C(0, ξ3) = 0, C(1, ξ3) = 1, (2.23a)

∂C(ξ1, ξ3 = 0)

∂ξ3

= 0,
∂C(ξ1, ξ3 = ζ )

∂ξ3

= 0. (2.23b)

It now becomes apparent that the Henry problem for seawater intrusion in coastal
aquifers (2.20)–(2.23) is completely characterized by the dimensionless parameters α

and Pe in (2.17). The coupling parameter α is the ratio of the characteristic velocity
induced by density effects, K ε, to the flow velocity in the absence of density effects,
K	h0/L, and can also be viewed as the ratio of buoyancy to viscous forces. The
strength of coupling between the flow and salt transport processes increases with α.
The Péclet number Pe is the ratio between a typical water flux in the absence of
density effects, K	h0 to diffusion in the porous medium, θD, and as such compares
the relative importance of advective and diffusive transport mechanisms.

3. Solution of the flow problem
In the following, we derive an exact solution for the flow problem (2.20)–(2.21) as

a functional of the salt concentration C(ξ ), which serves as a basis for a perturbation
solution for the fully coupled system of flow and transport equations.

Let G(ξ , ξ ′) denote the Green function for the flow problem (2.20)–(2.21) defined
as a solution of the Poisson equation

∇2G(ξ , ξ ′) = −δ(ξ − ξ ′), (3.1a)

where δ(ξ ) is the Dirac delta function, subject to the homogeneous boundary
conditions

G|ξ1=0
= G|ξ1=1

= 0,
∂G

∂ξ3 |ξ3=0

=
∂G

∂ξ3 |ξ3=ζ

= 0. (3.1b)

Then a formal solution of (2.20)–(2.21) can be written as

H (ξ ) = α

∫
Ωd

G
∂c

∂ξ ′
3

dξ ′ +

∫
∂Ωd

[
e3G

∂H

∂ξ ′
3

− e1H
∂G

∂ξ ′
1

]
· dn, (3.2)

where n is the unit normal vector for the domain boundary ∂Ωd .
The expressions for G(ξ , ξ ′) in (3.1a)–(3.1b) are given in terms of double infinite

summations (e.g. Carslaw & Jaeger 1959; Butkovskii 1982). In the Appendix § A.1,
we derive two alternative representations for the Green function G(ξ , ξ ′), both of
which involve single infinite summations. We use the first representation (A 7) to
evaluate the first boundary integral on the right-hand side of (3.2) and the second
representation (A 10) to evaluate the second boundary integral. Thus, (3.2) gives a
solution for the dimensionless freshwater head,

H (ξ ) = (1 − ξ1) + αηB(ξ ) + αηC[ξ , C(ξ )], (3.3)
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where

ηB =
ξ1ζ

2
+

∞∑
l=1

al cos

(
lπξ3

ζ

)
sinh(lπξ1/ζ )

sinh(lπ/ζ )
, al =

2ζ (1 − (−1)l)

l2π2
, (3.4)

represents a contribution to H stemming from the boundary conditions at the
saltwater boundary, and

ηC =

∫
Ωd

G
∂C

∂ξ ′
3

dξ ′ +

∞∑
l=1

1

lπ

sin(lπξ1)

sinh(lπζ )
{b̃lcosh[lπ(ξ3 − ζ )] − b̂lcosh(lπξ3)}, (3.5a)

b̃l = 2

∫ 1

0

C(ξ1, 0) sin (lπξ1) dξ1, b̂l = 2

∫ 1

0

C(ξ1, ζ ) sin (lπξ1) dξ1, (3.5b)

is a contribution to H resulting entirely from the coupling of flow and salt transport.
The solution (3.3) is formal, in that it depends on the yet unknown salt concentration

distribution C(ξ ). In § 4, we use a perturbation expansion in the coupling parameter
α to overcome this problem. An alternative to this approach is to use simplifying
physical assumptions that give rise to the pseudo-coupled transport model described
below.

3.1. Pseudo-coupled transport model

The pseudo-coupled model of Simpson & Clement (2003) assumes that the spatial
variability of the water density ρ is negligible, i.e. that flow and transport are coupled
only via the boundary condition at the saltwater boundary at ξ1 = 1. Under these
assumptions, the salt concentration distribution is the Heaviside function Θ ,

Cpc(ξ ) = Θ(ξ1 − 1 + γ ), (3.6)

where γ � 1 is a model parameter. Substituting (3.6) into (3.3)–(3.5) and disregarding
subleading contributions of order γ yields ηC = 0, so that the freshwater hydraulic
head for the pseudo-coupled model is given by

Hpc(ξ ) = 1 − ξ1 + αηB(ξ ). (3.7)

One of the goals of our analysis is to examine the validity and accuracy of the
pseudo-coupled model for variable-density flow in porous media.

4. Intermediate Péclet numbers
Here we use perturbation expansions in the coupling parameter α to derive

approximate analytical solutions for the freshwater hydraulic head and the salt
concentration. Since this requires α to be small, it is worth revisiting the physical
implications of this requirement.

Since the coupling parameter α compares a typical flow velocity induced by density
contrasts at the saltwater boundary to the flow velocity without density effects, it affect
variable-density flow in porous media in two important ways. First, in the absence
of density contrasts, flow, induced by hydrostatic saltwater at the boundary ξ1 = 1, is
horizontal. Hence, α serves as a measure of the deviation of the flow velocity from the
ξ1-direction. The magnitude of this deviation is quantified by ηB(ξ ) in (3.4). Second,
α quantifies the influence of density effects on the flow velocity due to intruding
saltwater. As such, it is a measure of the strength of the coupling between fluid flow
and salt transport, as quantified by ηC[ξ , C(ξ )] in (3.5).
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We begin our perturbation analysis by recasting the transport problem (2.22) in the
form of an integral equation.

4.1. Integral equation for the transport problem

Substituting (3.3) into (2.22) leads to the nonlinear transport equation

∂C

∂ξ1

− Pe−1∇2C = α∇ηB · ∇C + α

(
∇ηC · ∇ + C

∂

∂ξ3

)
C. (4.1)

Let g(ξ , ξ ′) be the Green function defined as the solution of the advection–diffusion
equation

Pe−1∇2g(ξ , ξ ′) − ∂g(ξ , ξ ′)

∂ξ1

= −δ(ξ − ξ ′), (4.2a)

subject to homogeneous boundary conditions

g|ξ1=0
= g|ξ1=1

= 0,
∂g

∂ξ3 |ξ3=0

=
∂g

∂ξ3 |ξ3=ζ

= 0. (4.2b)

The corresponding analytical expression for g(ξ , ξ ′) in the form of a single infinite
summation is derived in the Appendix § A.2.

Rewriting (4.1) in terms of ξ ′, multiplying the result with g(ξ , ξ ′), integrating over
Ωd , and applying the Green theorem yields a nonlinear integral equation

C(ξ ) = C0(ξ ) + α

∫
Ωd

g∇′ηB · ∇′Cdξ ′ + α

∫
Ωd

g

(
∇′ηC · ∇′ + C

∂

∂ξ ′
3

)
C dξ ′

. (4.3)

Here the first term

C0(ξ ) = Pe−1

∫
∂Ωd

(g∇′C − C∇′g) · dn −
∫

∂Ωd

Cge1 · dn (4.4)

accounts for the boundary effects on the salt concentration distribution C(ξ ), the
second term reflects the influence of the hydrostatic saltwater boundary on salt
transport, and the third term quantifies the linear coupling between flow and transport.

It is interesting to note that (4.4) is the solution of the transport problem (4.1) and
(2.23) in the absence of density effects, i.e. when α = 0. Substituting (A 24) into (4.4),
while recalling boundary conditions (2.23), gives

C0(ξ ) ≡ C0(ξ1) =
exp(ξ1Pe) − 1

exp(Pe) − 1
. (4.5)

We solve the system of nonlinear equations (3.3) and (4.3) analytically via a
perturbation expansion in the coupling parameter α.

4.2. Perturbation solution

Consider an expansion of the salt concentration C(ξ ) into a perturbation series in
powers of α,

C(ξ ) =

∞∑
k=0

αkC(k)(ξ ), (4.6)

which implies that the coupling parameter α is small. Substituting (4.6) into (3.5)
gives

ηC

[
ξ ,

∞∑
k=0

αkC(k)(ξ )

]
=

∞∑
k=0

αkηC

[
ξ , C(k)(ξ )

]
, (4.7)
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since ηC [ξ , C(ξ )] is linear in C(ξ ). Then it follows from (3.3) that hydraulic head H

can be represented by a perturbation series

H (ξ ) =

∞∑
k=0

αkH (k)(ξ ). (4.8)

Substituting (4.7) into (3.3) gives an explicit expression for an expansion of H (ξ ) in
terms of the expansion of C(ξ ) in (4.6),

H (ξ ) = 1 − ξ1 + α
{
ηB(ξ ) + ηC

[
ξ , C(0)(ξ )

]}
+

∞∑
k=2

αkηC

[
ξ , C(k−1)(ξ )

]
. (4.9)

Comparison of (4.8) and (4.9) shows that

H (0)(ξ ) = 1 − ξ1, H (1)(ξ ) = ηB(ξ ) + ηC

[
ξ , C(0)(ξ )

]
,

H (k)(ξ ) = ηC

[
ξ , C(k−1)(ξ )

]
, k > 1.

}
(4.10)

Equations (4.10) reveal that the terms H (k) with k > 1 in the expansion (4.8) depend
on the terms C(k−1) in the expansion (4.6).

Substituting (4.6) and (4.7) into (4.3) we obtain

C(ξ ) = C0(ξ1) +

∞∑
k=1

αk

[∫
Ω

g∇′ηB · ∇′C(k−1) dξ ′

+

k−1∑
m=0

∫
Ω

g

(
∇′ηC

[
ξ ′

, C(m)
]

· ∇′ + C(m) ∂

∂ξ ′
3

)
C(k−m−1) dξ ′

]
. (4.11)

Comparison of (4.6) and (4.11) shows that C(0)(ξ ) ≡ C0(ξ1) and, for k � 1,

C(k)(ξ ) =

∫
Ω

g∇′ηB · ∇′C(k−1) dξ ′

+

k−1∑
m=0

∫
Ω

g

(
∇′ηC

[
ξ ′

, C(m)
]

· ∇′ + C(m)(ξ ′)
∂

∂ξ ′
3

)
C(k−m−1) dξ ′

. (4.12)

Thus our perturbation expansions generate a hierarchy of recursive relations for
C(k)(ξ ), which in turn determine the terms H (k+1)(ξ ) in the expansion of the hydraulic
head H (ξ ). Thus, the fully coupled system of equations for flow and transport has
been decoupled by means of an expansion in the coupling parameter α.

Nonlinearity of the transport equation (4.1), caused by the dependence of H on the
salt concentration, manifests itself through dependence of the expansion terms C(k)(ξ )
with k � 1 on all C(j )(ξ ) with j ∈ [1, . . . , k − 1]. Hence, every approximation order
in α simultaneously increases the accuracy of the solutions for C as well as for H .

4.2.1. Perturbation solution of the pseudo-coupled model

For the pseudo-coupled model (3.6) and (3.7), the transport equation (4.1) is linear
in C(ξ ), the second term on the right-hand side of (4.12) is zero, and each C(k)(ξ ) with
k � 1 in (4.12) depends only on the lower-order expansion term C(k−1)(ξ ). Hydraulic
head H (ξ ) is exact at first order in α. In this case, the perturbation solution represents
an expansion in the deviations of the exactly known flow field from constant uniform
flow in the ξ1-direction, and every approximation order increases the accuracy of the
concentration solution.
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4.3. First-order approximations and numerical simulations

In the following, we evaluate expressions (4.6) and (4.8) up to first order in α. We
consider both the coupled and pseudo-coupled formulations of the flow and transport
problems and compare their solutions with numerical simulations obtained from the
well-tested and widely used software SUTRA (Voss & Provost 2002).

The first-order approximations of hydraulic head H (ξ ) and salt concentration C(ξ )
are given by

H (ξ ) = 1 − ξ1 + αηB(ξ ) + αηC[ξ , C0(ξ )] + O(α2) (4.13)

and

C(ξ ) = C0(ξ1) + α

∫
Ωd

g
∂ηB

∂ξ ′
1

∂C0

∂ξ ′
1

dξ ′ + α

∫
Ωd

g
∂ηC[ξ ′

, C0(ξ
′
1)]

∂ξ ′
1

∂C0

∂ξ ′
1

dξ ′ + O(α2), (4.14)

respectively. The coefficients b̃l and b̂l in the expression for ηC in (3.5) are evaluated
explicitly to yield

b̃l ≡ b̂l =
2

exp(Pe) − 1

{
lπ

1 − exp(Pe)(−1)l

Pe2 + (lπ)2
+

(−1)l − 1

lπ

}
. (4.15)

The infinite summations in the expressions for the Green function g in (A 24),
ηB in (3.4) and ηC in (3.5) converge exponentially with the summation index. Their
numerical evaluation requires a relatively small number of terms (10, in our numerical
calculations). The quadratures in (4.14) and (4.16) are evaluated numerically with a
ten-point Gauss-Legendre integration (Press et al. 1992).

4.3.1. First-order solutions of the pseudo-coupled problem

For the pseudo-coupled problem, the first-order expression for hydraulic head Hpc(ξ )
is given by (3.7). The first-order approximation of the salt concentration distribution
is given by

Cpc(ξ ) = C0(ξ1) + α

∫
Ωd

g
∂ηB

∂ξ ′
1

∂C0

∂ξ ′
1

dξ ′ + O(α2). (4.16)

Comparison of (3.7) to (4.13) and (4.14) to (4.16) shows that the pseudo-coupled
model results in the first-order solutions for hydraulic head H and salt concentration
C that have the same leading behaviour as their counterparts derived from the
coupled model. However, the sub-leading terms in these expressions are incomplete.

4.3.2. Direct numerical simulations

Direct numerical simulations of the flow and transport problems (2.20)–(2.23) were
performed with SUTRA (Voss & Provost 2002), a finite element code for solving a
system of partial differential equations for variable-density flow and transport. The
calculations for the decoupled and coupled transport problems were performed with a
spatial resolution of 	ξ1 =	ξ3 = 5 × 10−3, which corresponds to 400 × 200 elements.
For the pseudo-coupled problem, heads and concentrations were obtained by solving
the steady-state flow and transport equations. For the coupled problem, heads and
concentrations were determined iteratively as an asymptotic limit of the respective
transient solutions. The solutions were asymptotically stationary and did not change
after a simulation time of 6 × 105 s.

In the following simulations, we set a thickness ζ = 0.5 and the Péclet number
Pe = 10. The former corresponds to the original shape of the flow domain in the
Henry problem. The latter represents a value for the Péclet number for which
the intrusion of seawater is noticeable without being dominated by diffusion. We
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Figure 2. Equipotential lines of the first-order approximation of dimensionless freshwater
head H (ξ ) corresponding to the coupled model (solid lines) given by (4.13) and to the
pseudo-coupled model (dotted lines) given by (3.7), for ζ = 0.5, Pe =10, and (a) α = 0.25, (b) α =
0.5, (c) α = 1.0, and (d) α = 2.0. The isolines are equidistant with 	H = 0.1.

considered a range of values of the coupling parameter α varying from α =0.25 to
2.0. Since we set ε = 1/40, the lowest value corresponds to a freshwater hydraulic
head gradient of 10%, which should be considered as high, while the other extreme
(α = 2) corresponds to a freshwater hydraulic head gradient of 1.25%, which is typical
for many coastal aquifers.

4.4. Freshwater head

Figure 2 illustrates the impact of the modelling assumptions by comparing the
first-order solutions (3.7) and (4.13) for the pseudo-coupled and coupled flow and
transport models, respectively. For weak coupling (α = 0.25 and 0.5), the solutions
for the hydraulic head H (ξ ) resulting from the two models coincide at some distance
from the saltwater boundary ξ1 = 1, while differing visibly in the region adjacent to
this boundary. Hydraulic head is dominated by the saltwater boundary conditions, yet
visible density effects due to the intruding saltwater are apparent. The head isolines
in the coupled model are more curved than their pseudo-coupled counterparts. An
increasing vertical component of the flow velocity reflects the effect of buoyancy which
causes light freshwater to tend to float on top of denser saltwater. Still, boundary
heads dominate the solution, so that water flows from the inland freshwater boundary
to the sea through the whole aquifer cross-section.

For stronger coupling (α = 1 and 2), the differences between the head isolines for
the two models become more pronounced. The distance between the isolines in the left
half of the flow domain increases compared to the weaker coupling, which indicates
a decreasing freshwater flow. The head isolines connecting the bottom of the flow
domain with the saltwater boundary indicate a convection cell developing in the lower
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Figure 3. Equipotential lines of the first-order approximation of dimensionless freshwater
head H (ξ ) resulting from the coupled model (solid lines) given by (4.13) and of the numerical
solution of the full problem (2.20)–(2.23) obtained with SUTRA (dotted lines), for ζ = 0.5,
Pe = 10, and (a) α = 0.25, (b) α = 0.5, (c) α = 1.0, and (d) α = 2.0. The isolines are equidistant
with 	H = 0.1.

right corner. For the coupled model, this convection cell intrudes further into the flow
domain than for the pseudo-coupled model. Again, this reflects the effect of buoyancy:
intruding dense seawater tends to sink, which can only be captured by coupling. It is
also worth noticing that α =1 appears to mark the onset of this convection cell as
the isolines for the coupled problem tend to become horizontal at the bottom of the
sea boundary. Note that H (ξ ) for the pseudo-coupled model is exact at first order in
α as discussed in the previous section. The first-order approximation for the coupled
model, however, is not expected to be consistent for such values of α, because it is
strictly valid only for the weak coupling. This issue is discussed below.

Figure 3 demonstrates the accuracy of the first-order approximations of hydraulic
head by comparing the head isolines obtained from the first-order approximation
(4.13) of the coupled problem (solid lines) and from direct numerical simulations
(dotted lines) of the full problem (2.20)–(2.23). SUTRA simulations of the pseudo-
coupled problem produce solutions for freshwater heads that are identical to the exact
analytical solution (3.7), and are not displayed here.

For weak coupling (α =0.25 and 0.5), the head isolines obtained from the first-
order approximation coincide with the ones obtained from SUTRA, confirming the
consistency and accuracy of our perturbation solution. As α increases, the first-order
solution deviates from its numerical counterpart. For moderate coupling (α = 1),
the first-order approximation remains fairly robust. The largest deviations from the
numerical solutions are observed in the lower right half of the flow domain, close to the
saltwater boundary. This is because the boundary conditions at the bottom and top of
the flow domain are expressed by (2.20) and (3.5b) in terms of the salt concentration
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Figure 4. Isolines C(ξ ) = 0.5 for the salt concentration given by the first-order solutions (4.14)
and (4.16) of the coupled (C-PT) and pseudo-coupled (DC-PT) problems, respectively, as well
as by direct numerical simulations with SUTRA of the coupled (C-S) and pseudo-coupled
(DC-S) problems. The following parameters are used: ζ = 0.5, Pe = 10, and (a) α = 0.25,
(b) α = 0.5, (c) α = 1.0, and (d) α = 2.0. The vertical solid lines are the C0(ξ1) = 0.5 isolines
corresponding to the zeroth-order approximation (‘bare solution’) of C(ξ ).

C(ξ ). The first-order approximation of C(ξ ) is given by the ‘bare’ solution C0(ξ1),
which is independent of ξ3. However, saltwater intrusion is most pronounced in the
lower right corner, where a convection cell develops resulting in a strong depend-
ence on ξ3. This feature is a higher-order effect and cannot be accounted for by
the first-order approximation. For strong coupling (α = 2), the difference between the
two solutions is significant and occurs throughout the flow domain Ωd . The isolines
of the full numerical solution are more curved than those given by the first-order
approximation, indicating larger vertical flow.

Of course, it should come as no surprise that the accuracy of the perturbation
solution (4.13) deteriorates with increasing α. Indeed, the use of α as a (small)
perturbation parameter formally limits the range of applicability of (4.13) to α � 1.
Nevertheless, figure 3 demonstrates that the perturbation solution (4.13) for freshwater
head H (ξ ) remains accurate for moderate coupling with α as high as 1.

On a separate note, figure 3 shows that the extent of the convection cell
increases with the degree of coupling between the flow and transport processes,
i.e. with increasing coupling parameter α, which is qualitatively consistent with the
observations in figure 2, which compares the first-order approximations to the coupled
and pseudo-coupled scenarios.

4.5. Salt concentration

Figure 4 illustrates the impact of the modelling assumptions by comparing the
C(ξ ) = 0.5 isolines of the salt concentration C(ξ ) computed with the first-order
approximations of the solutions to the coupled (4.14) and pseudo-coupled (4.16)
problems, as well as with the corresponding direct numerical simulations (SUTRA).
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Figure 5. Salt concentration profiles at ξ3 = 0.1 given by the first-order solution (4.14) (PT),
direct numerical simulations with SUTRA (S), and the zeroth-order solution C0(ξ1). The
following parameters are used: ζ = 0.5, Pe = 10, and (a) α = 0.25, (b) α = 1.

All solutions qualitatively capture the main features of the phenomenon. Specifically,
one can see how the heavier saltwater intrudes at the right bottom of the flow domain,
while it is pushed back by the outflowing lighter freshwater at the right top.

For the full range of coupling α, the difference between the coupled and pseudo-
coupled concentration isolines is significant. In the coupled model, saltwater intrudes
consistently more at the top of the domain and less at the bottom. As saltwater
intrudes, it loses energy due to diffusion of salt, a feature which is inherently connected
to the coupled nature of flow and transport. Since this mechanism is not captured
by the pseudo-coupled model, it overestimates the saltwater intrusion. Furthermore,
as α increases, the intersection between the isoline and the top boundary moves
seaward, reflecting the ‘wash-out’ effect of freshwater outflow, which concentrates
in the top portion. This leads to the increase in the convexity of the concentration
isolines predicted by the pseudo-coupled model. The differences between the coupled
and pseudo-coupled models are not completely accounted for by the first-order
approximations because, as discussed in § 4.3, low order in α means low order with
respect to the approximation of the transport solution for the pseudo-coupled model,
while in the coupled model it implies low order with respect to the simultaneous
approximation of the solutions for the flow and transport problems. The density
effects leading to the above features are of higher order in α.

Figure 4 also demonstrates the accuracy of the perturbation solutions to the
coupled and pseudo-coupled problems. For all α, the zeroth-order approximation of
salt concentration C0(ξ1) significantly underestimates the extent of seawater intrusion
in the lower two thirds of the flow domain, and overestimates it in the upper part of the
flow domain. For weak coupling (α = 0.25 and 0.5), the first-order approximations
of the coupled and pseudo-coupled solutions are in a good agreement with ‘true’
solutions obtained by SUTRA. The discrepancy between the first-order solutions
and their numerical counterparts increases with α, as should be expected from the
perturbative nature of the former.

Figure 5 further elucidates the issue of accuracy of the first-order approximation by
providing the concentration distributions along the horizontal cross-section ξ3 = 0.1.
For weak coupling (α = 0.25), the first-order approximation of the solution to the
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coupled problem is practically indistinguishable from the solution obtained with
direct numerical simulations (SUTRA). As expected, the difference between the two
solutions becomes more pronounced as α increases.

Another important feature revealed by figure 5 is that saltwater intrudes further
than would be predicted by the model based on diffusion of salt in uniform flow, i.e.
by C0(ξ1).

5. Small Péclet numbers
As defined by (2.17), small Péclet numbers Pe occur in scenarios characterized

either by very large values of the diffusion coefficient D or by very small values of the
freshwater flux (i.e. either by very small hydraulic conductivity K or by very small
pressure drop 	h0). Both situations can occur in practice: tidal fluctuations induce
temporal fluctuations of the flow velocity, which lead to large effective dispersion in the
upper portion of coastal aquifers (Dentz & Carrera 2003); in diffusion experiments
with variable-density flows in porous media (Dror, Yaron & Berkowitz 2003), a
narrow sample (ζ ≈ 10) is placed between two reservoirs, one containing freshwater
and the other saltwater, while keeping the mean pressure equilibrated on both sides.
This implies h0 = (1+ ε/2)d . These conditions are imposed to eliminate advection, i.e.
to obtain a small Péclet number Pe. The resulting coupling parameter α and Péclet
number Pe, (2.17), then are given by

α =
2

ζ
, Pe =

Kεd

θD
, (5.1)

respectively. For a typical value of ζ =10, α = 1/5, while the Péclet number is
proportional to the (small) density contrast ε. Nevertheless, in practice advection
is observed for such a scenario (Poupeleer et al. 2003) and, in fact, it plays an
important role as we will illustrate in the following.

This section is devoted to analysing the case of small Pe. Taking the limit of (2.22)
as Pe → 0, we obtain a transport equation for the zeroth-order approximation of the
salt concentration Csp in the small-Péclet-number regime,

∇2C(0)
sp (ξ ) = 0. (5.2)

A solution of (5.2) subject to the boundary conditions (2.23) is

C(0)
sp (ξ ) = C(0)

sp (ξ1) = ξ1, (5.3)

which predicts that the salt concentration decreases linearly with distance from the
seawater boundary. The corresponding flow problem is given by substituting (5.3)
into (2.20)–(2.21),

∇2H (0)
sp (ξ ) = 0 (5.4)

subject to the boundary conditions

H (0)
sp (0, ξ3) = 1, H (0)

sp (1, ξ3) = α(ζ − ξ3), (5.5a)

∂H (0)
sp (ξ1, 0)

∂ξ3

= −αξ1,
∂H (0)

sp (ξ1, ζ )

∂ξ3

= −αξ1. (5.5b)

Its solution gives an expression for the dimensionless hydraulic head H (0)
sp (ξ ),

H (0)
sp (ξ ) = 1 − ξ1 + αξ1(ζ − ξ3). (5.6)
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Figure 7. As figure 6 but with α = 1, ζ = 1/2.

According to (2.18), this yields the Darcy velocity

U1(ξ ) ≡ U1(ξ3) = 1 + α(ξ3 − ζ ), U3(ξ ) ≡ 0. (5.7)

The result is a one-dimensional (horizontal) shear flow with a linear velocity profile,
see figures 6(a) and 7(a). For α < ζ −1 the flow velocity is positive, i.e. ν1(ξ3) > 0. For
α � ζ −1 the Darcy flow changes direction from seaward for (ζ − α−1) < ξ3 � ζ to
inland for 0 � ξ3 < (ζ − α−1). In a typical diffusion experiment, ζ − α−1 = ζ/2. The
velocity profile for the typical value of ζ = 10 is shown figure 6(a). It demonstrates
that advection plays an important role, and that such an experimental setup does not
eliminate advection.

For small but finite Péclet numbers Pe, we obtain analytical solutions for salt
concentration Csp(ξ ) and hydraulic head Hsp(ξ ) via perturbation expansions in the
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powers of Pe,

Csp(ξ ) = C(0)
sp (ξ1) +

∞∑
n=1

PenC(n)
sp (ξ ) (5.8)

and

Hsp(ξ ) = H (0)
sp (ξ3) +

∞∑
n=1

PenH (n)
sp (ξ ). (5.9)

Here

H (n)
sp (ξ ) = αηC

(
ξ , C(n)

sp

)
, n � 1, (5.10)

and ηC is defined by (3.5a).
From (2.22), we obtain the integral equation for Csp(ξ ),

Csp(ξ ) = ξ1 + Pe

∫
Ωd

gsp

{
∇′Hsp · ∇′Csp + αCsp

∂Csp

∂ξ ′
3

}
dξ ′

, (5.11)

where the Green function gsp is derived from the Green function (A 24) by taking the
limit

gsp(ξ , ξ ′) ≡ lim
Pe→0

g(ξ , ξ ′)

Pe
= G(ξ , ξ ′) (5.12)

and G(ξ , ξ ′) is given by (A 10). Inserting (5.8) and (5.9) into (5.11) allows one to
express C(n)

sp in terms of C(k)
sp with k <n. In particular, the first-order term C(1)

sp is given
by

C(1)
sp (ξ ) =

(1 − αζ )

2
ξ1(ξ1 − 1) − α

∫
Ωd

Gξ ′
3 dξ ′

, (5.13)

and the higher-order terms have the form

C(n+1)
sp =

n∑
j=0

∫
Ωd

G

[
∇′H (j )

sp ∇′C(n−j )
sp + C(j )

sp

∂C
(n−j )
sp

∂ξ ′
3

]
dξ ′

. (5.14)

Figures 6(b) and 7(b) show the Csp(ξ ) = 0.5 isoline for Pe = 0, 0.1, 0.25 and 0.5. For
Pe = 0, this isoline represents the exact solution C(0)

sp ; for the remaining Pe, it is

computed with the first-order solution C(0)
sp + C(1)

sp . The isoline for Pe = 0 is a vertical
line at ξ1 = 0.5.

For ζ = 10 and α =1/5, the 0.5 isolines are point-symmetric about (0.5, 5). For
finite Péclet numbers, the salt concentration is pushed toward the saltwater boundary
in the upper half of the domain and toward the freshwater boundary in the lower half
following the linear velocity profile (5.7). The 0.5 isoline ‘rotates’ toward the saltwater
boundary, and its slope increases with Pe. The resulting concentration profiles are
considerably different from the purely diffusive case.

For ζ = 1/2 and α = 1, the velocity profile is given in figure 7(a). The uniform
flow velocity is directed toward the saltwater boundary with downward decreasing
flow velocity. The resulting 0.5 isolines are shown in figure 7(b). As Pe increases, the
concentration isolines are pushed toward the sea boundary, more so at the top than
at the bottom of the domain. As expected, the deviation from the vertical straight
line increases with Pe. Yet the deviations from a purely diffusive concentration profile
in this case are not as pronounced as in the scenario characterized by ζ = 10 and
α = 1/5.
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These results clearly demonstrate that the diffusion experiments cannot be con-
ducted with vertical samples of two fluids with different densities because (i) the
Péclet number Pe =Kεd/(2θD) is small but finite, and more importantly, (ii) diffusion
may become negligible compared to advection in view of the velocity profile shown
in figure 6(a). Obviously, one can overcome these difficulties by setting the sample
horizontally, as pointed out by Dror et al. (2003).

Finally, it is worth pointing out that the perturbation solutions for salt concentration
(4.14) and hydraulic head (4.13) – obtained for the case of weak coupling (small α)
but intermediate Pe – converge to the exact solutions (5.3) and (5.6), respectively, in
the limit as Pe → 0.

6. Large Péclet numbers
In the absence of diffusion there is no mixing between salt- and freshwater. The two

fluids are separated by a sharp interface. The sharp-interface approximation for salt-
water intrusion into coastal aquifers has been studied extensively (e.g. Bear & Dagan
1964; Bear 1972; Kacimov & Obnosov 2001; Kacimov 2001; Bakker, Oude Essink &
Langevin 2004). Within this modelling framework, the interface is treated as a free sur-
face, whose position can be determined by, e.g., the hodograph method (e.g. Bear 1972),
techniques based on the method of boundary value problems (e.g. Kacimov 2001).

The limit of Pe → ∞ represents a singular limiting case and leads to paradox
phenomena. There is a jump discontinuity along the interface and, as a result, there
is no freshwater outflow, since at the seaside boundary the salt concentration is c = 1.
This is not a problem for the case of finite diffusion (finite Pe), because the salt
concentration is a continuous function of space. Hence, analytical solutions to the
sharp-interface problem usually disregard the seepage face, which leads to a vortex-
like singularity at the upper right corner of the outflow boundary (e.g. de Josselin de
Jong 1958; Bakker et al. 2004).

In the limit as Pe → ∞, the transport equation (2.19) changes its character from a
second-order to a first-order partial differential equation,

U(ξ ) · ∇Csi(ξ ) = 0, (6.1)

where the salt concetration in the sharp-interface approximation Csi = 1 behind the
front and 0 ahead of the front; and the dimensionless flow velocity U(ξ ) is given
by (2.18). The divergence-free flow velocity can be expressed in terms of the stream
function ψ(ξ ) by

U(ξ ) =

(
− ∂

∂ξ3

,
∂

∂ξ1

)T

ψ(ξ ). (6.2)

A solution Csi(ξ ) of (6.1) can be written as a function F of ψ ,

Csi(ξ ) = F [ψ(ξ )]. (6.3)

In the absence of molecular diffusion, the interface coincides with the ψ(ξ ) = ψ0

isoline on which U(ξ ) = 0, i.e.

ψ(ξ )|U (ξ )=0 = ψ0. (6.4)

Hence, the solution of the salt transport equation (6.1) is the Heaviside function

Csi(ξ ) = Θ[ψ(ξ ) − ψ0], ξ1 < 1, (6.5)

which defines the sharp interface between salt- and freshwater.
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Figure 8. Concentration isolines C(ξ ) = 0.5 obtained with the direct numerical simulations
(SUTRA) from (a) the coupled Henry problem and (b) the pseudo-coupled model. The solid
line in (a) shows the sharp interface given by the Ghyben–Herzberg approximation (6.6), while
the solid line in (b) shows the sharp interface given by (6.5). The following parameters are
used: α = 2, ζ = 1/2, and Pe = 10, 102 and 103.

Figure 8(a) shows the 0.5 concentration isolines computed with direct numerical
simulations (SUTRA) for α = 2 and Pe =10, 102 and 103. As Péclet number Pe
increases, the ‘toe’ (the point defined as the intersection of the C(ξ ) = 0.5 isoline
with the ξ1-axis) moves toward the freshwater boundary, while the 0.5 isoline is
pushed toward the sea boundary at the top of the domain. In the diffusion-dominated
transport scenario studied in the previous section, the 0.5 isoline moves backward
with increasing Pe. In the advection-dominated scenario considered in this section, we
observe the opposite behaviour. This is due to the fact that now saltwater intrusion
is dominated by the flow pattern, and the position of the mixing zone, or the sharp
interface in the Pe = ∞ limit, coincides with a streamline of the flow field. Intruding
saltwater loses energy due to dilution. As Pe increases, the dilution of salt is reduced,
which results in the inland movement of the toe. Note the existence of a seepage face
at the upper seaside boundary for increasing Pe.

The solid line in figure 8(a) represents the position of the sharp interface predicted
by the Ghyben–Herzberg approximation, which assumes that saltwater is immobile
(e.g. Bear 1972). Using the condition of pressure equilibrium along the interface
between fresh- and seawater and the conservation of total flux, one obtains the
Ghyben–Herzberg approximation for the interface position z(ξ1),

z(ξ1) = ζ −
√

ζ 2 − 2Q

α
(ξ1 − ξtoe). (6.6)

Here the position of the toe, ξtoe, is given by

ξtoe = 1 − ζ 2α

2Q
(6.7)

in terms of the total flux Q through the flow domain. We derive an exact solution for
the flux,

Q = −
∫ ζ

0

∂H (ξ )

∂ξ1

dξ = ζ

(
1 − αζ

2

)
, (6.8)

which is valid for an arbitrary Péclet number.
Figure 8(a) demonstrates that the sharp-interface approximation overestimates the

position of the toe for large but finite Pe. The seepage face is not represented in this
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approximation and the outflow of freshwater concentrates at the upper right corner,
which becomes a singular point.

6.1. Pseudo-coupled model for large Pe

The pseudo-coupled Henry problem described in § 3.1 is exactly solvable in the limit of
Pe → ∞. The stream function ψ(ξ ) for U(ξ ) corresponding to the exact solution (3.7)
for the hydraulic head Hpc(ξ ) is given by

ψpc(ξ ) = 1 − ξ3 +
ξ3ζ

2
+

∞∑
l=1

al sin

(
lπξ3

ζ

)
cosh(lπξ1/ζ )

sinh(lπ/ζ )
. (6.9)

Substituting (6.9) into (6.5), we obtain the exact solution for salt concentration C(ξ ).
Figure 8(b) compares the position of the sharp interface determined from this

solution with its counterpart computed with direct numerical simulations (SUTRA)
of the pseudo-coupled Henry problem with Pe = 10, 102 and 103. The exact sharp-
interface solution is in good agreement with its numerical counterpart for large
Péclet numbers (Pe =103 and 102). Not surprisingly, this agreement deteriorates as
Pe becomes smaller.

A key feature of the pseudo-coupled model is the absence of the vortex-type
singularity at the outflow boundary and the seepage face. This feature is consistent
with other sharp-interface scenarios (e.g. Kacimov 2001), and results in the boundary
segment along which freshwater discharges into the ocean.

Comparison of figures 8(a) and 8(b) shows the remarkable qualitative and
quantitative differences between the coupled and pseudo-coupled formulations for
large Pe. Thus, flow and salt transport are more sensitive to density variation in
the advection-dominated case (large Péclet numbers Pe). For intermediate Pe, flow
and salt transport are described reasonably well by the much simpler pseudo-coupled
problem.

7. Summary and conclusions
We analysed the Henry problem for steady-state variable-density flow and transport

in homogeneous porous media. This setup is often used to represent seawater intrusion
in coastal aquifers, wherein fresh water is discharged into the sea, while salt water
is advected and diffused into the aquifer. In this process, a transition zone between
fresh and saline water develops, thus endangering the quality of fresh groundwater.
The coupling of flow and transport phenomena is caused by the dependence of the
water density on the salt concentration.

The dimensionless form of the governing equations shows that flow and transport
processes are effectively governed by two dimensionless groups. These are the Péclet
number Pe and the coupling parameter α. The former quantifies the relative effects
of advection and diffusion, while latter quantifies the relative importance of density
effects and external forces (boundary conditions). Specifically, the coupling parameter
α measures the strength of the coupling between fluid flow and salt movement, and
quantifies the deviation of the flow velocity driven by the seaside boundary condition
from a uniform flow condition.

In conjunction with the fully coupled Henry problem, we consider its pseudo-
coupled formulation, which assumes that coupling of flow and transport is only
due to the saltwater boundary condition at the seaside, while neglecting effects of
density variations within the domain. One of the objectives of this study was to
establish the accuracy and the validity of this simplified model for the full range of
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the Péclet number Pe. Another was to analyse the relative effects of various transport
mechanisms, as well as the strength of coupling between flow and transport.

For intermediate values of the Péclet number Pe, we used a perturbation expansion
in the (small) coupling parameter α to derive analytical solutions for the spatial
distributions of the water potential (hydraulic head) and the salt concentration.
The salient feature of these solutions is that the flow and transport equations
are decoupled at every approximation order. The first-order approximations of the
analytical solutions for the water potential and the salt concentration were compared
with direct numerical simulations (SUTRA). We found the following.

(i) The first-order approximation of hydraulic head is accurate for moderate
density coupling (α < 1). For stronger coupling between flow and salt transport
(larger α), higher-order contributions of the perturbation series gain importance and
lead to the loss of accuracy of the perturbation solutions.

(ii) The coupled and pseudo-coupled models results in similar flow patterns when
α � 1.

(iii) The coupled solution for salt concentration has a conceptual advantage over
its pseudo-coupled counterpart, in that it retains the information about energy losses
linked to the diffusion of salt.

(iv) The pseudo-coupled formulation of the Henry problem overestimates the
volume of aquifer contaminated by the salt.

For small Péclet numbers Pe (the diffusion-dominated seawater intrusion), we used
a perturbation expansion in Pe to derive approximate solutions for hydraulic head and
salt concentration. This regime is typically used in experimental studies of diffusion
in variable density fluids, and may occur in coastal aquifers. We found the following.

(i) For Pe = 0, the salt concentration decreases linearly toward the freshwater
boundary while the corresponding flow field is given by a linear shear flow.

(ii) Even for very small Péclet numbers, advective transport may dominate diffusive
transport as a result of the linear velocity profile.

(iii) As Pe increases, the concentration isolines deviate from the linear behaviour
and move toward the seawater boundary. This behaviour is in contrast to that
observed in the limiting case of very large Pe, where saltwater intrudes more for
decreasing Pe as a consequence of less energy loss due to the dilution of salt.

For large Péclet numbers Pe, a clearly defined mixing zone develops, with
the (singular) limit of Pe → ∞ corresponding to a sharp interface. We analysed
the accuracy of the Ghyben–Herzberg approximation by comparing to the direct
numerical simulations. We also developed an analytical solution of the pseudo-
coupled model in the limit of Pe → ∞. We found the following.

(i) Both the coupled and pseudo-coupled formulations of the Henry problem
capture the presence of a seepage face along the seaside boundary. This salient
feature of seawater intrusion is absent in most sharp-interface models.

(ii) Flow and salt transport are more sensitive to density variation in the advection-
dominated case (large Péclet numbers Pe).

(iii) For intermediate Pe, flow and salt transport are described reasonably well by
the much simpler pseudo-coupled problem.

The perturbation formalisms developed provide a systematic methodological
approach and an effective analytical tool for the analysis of stable density-
dependent flow problems in homogeneous porous environments. The general
methodology introduced can be applied to a range of boundary value problems,
including temperature- or pressure-driven environmental density flows occurring in
deep aquifers, and is not restricted to the particular conditions considered here.
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Furthermore, it can be straightforwardly extended to include time-dependent flow
and transport scenarios as well as to density-dependent flow and transport in
heterogeneous environments. As such, the analytical method presented can serve
as the basis for a systematic investigation of the influence of ever present small-scale
medium heterogeneities on effective large-scale flow and transport.
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Appendix. Green functions
In the following we derive the Green functions for the flow problem in § 3, and for

the integral formulation of the the transport problem in § 4.1.

A.1. Green functions for the flow problem

The Green function G(ξ , ξ ′) for (2.20)–(2.21) can be obtained by taking the limit of
the Green function for the corresponding time-dependent diffusion problem (Carslaw
& Jaeger 1959),

G(ξ , ξ ′) =
2

ζπ2

∞∑
m=1

1

m2
sin(mπξ1) sin(mπξ ′

1)

+
4ζ

π2

∞∑
m,n=1

1

m2ζ 2 + n2
sin(mπξ1) sin(mπξ ′

1) cos

(
nπ

ξ3

ζ

)
cos

(
nπ

ξ ′
3

ζ

)
. (A 1)

This expression can be simplified by summing the first sum on the right-hand side
and one of the double sums by using the relations

2 cos

(
nπ

ξ3

ζ

)
cos

(
nπ

ξ ′
3

ζ

)
= cos

(
nπ

ξ3 + ξ ′
3

ζ

)
+ cos

(
nπ

ξ3 − ξ ′
3

ζ

)
, (A 2)

2 sin(mπξ1) sin(mπξ1) = cos[mπ(ξ1 − ξ ′
1)] − cos[mπ(ξ1 + ξ ′

1)], (A 3)

and (Gradshteyn & Ryzhik 1980)

∞∑
n=1

1

n2 + γ 2
cos

(
nπ

ξ

b

)
=

π

2γ

cosh

[
γ π

(
1 − ξ

b

)]
sinh(γ π)

− 1

2γ 2
, (A 4)

∞∑
m=1

1

m2
cos

(
mπ

ξ

a

)
=

π2

6
− π2|ξ |

2a
+

π2ξ 2

4a2
. (A 5)

Applying (A 2) and (A 4) to the second term on the right-hand side of (A 1) and
defining γ ≡ mζ , we obtain
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∞∑
m=1

sin(mπξ1) sin(mπξ1)

×
{

cosh{mπ[ζ − (ξ3 + ξ ′
3)]} + cosh[mπ(ζ − |ξ3 − ξ ′

3|)]
πm sinh(mπζ )

− 2

ζπ2m2

}
. (A 6)

The third term on the right-hand side of (A A 6) cancels with the first term on the
right-hand side of (A 1). For ξ ′

3 <ξ3, this yields

G(ξ , ξ ′) =
2

π

∞∑
m=1

sin(mπξ1) sin(mπξ ′
1) cosh(mπξ ′

3)
cosh[mπ(ζ − ξ3)]

m sinh(mπζ )
. (A 7)

For ξ ′
3 > ξ3 the arguments ξ3 and ξ ′

3 in (A 7) are switched.
To derive an alternative representation for the Green function G(ξ , ξ ′), we consider

the first and second sums on the right-hand side of (A 1) separately. Applying (A 3)
and (A 5) to the first sum on the right-hand side of (A 1) gives

2

ζπ2

∞∑
m=1

1

m2
sin (mπξ1) sin (mπξ1) =

(ξ1 + ξ ′
1) − |ξ1 − ξ ′

1|
2ζ

− ξ1ξ
′
1

ζ
. (A 8)

Applying (A 3) and (A 4) to the second term on the right-hand side of (A 1) and
defining γ ≡ n/ζ yields

∞∑
n=1

cos

(
nπ

ξ3

ζ

)
cos

(
nπ

ξ ′
3

ζ

)

× 1

πn sinh (nπ/ζ )

{
cosh

[
nπ

(
1

ζ
− |ξ1 − ξ ′

1|
ζ

)]
− cosh

[
nπ

(
1

ζ
− ξ1 + ξ ′

1

ζ

)]}
. (A 9)

Combining (A 8) and (A 9) leads to

G(ξ , ξ ′) =
ξ ′
1

ζ
(1 − ξ1) +

2

π

∞∑
n=1

cos

(
nπ

ξ3

ζ

)
cos

(
nπ

ξ ′
3

ζ

)

× sinh

(
nπξ ′

1

ζ

)
sinh[(nπ/ζ )(1 − ξ1)]

n sinh(nπ/ζ )
(A 10)

for ξ ′
1 < ξ1. For ξ ′

1 > ξ1 the arguments ξ1 and ξ ′
1 in (A 10) are switched.

A.2. Green function for the transport problem

Following Morse & Feshbach (1953), we replace (4.2) with

∇2ϕ(ξ ) − Pe
∂ϕ(ξ )

∂ξ1

= −Peρ(ξ ) (A 11)

and set

ϕ(ξ ) =

∞∑
m=1

Fm(ξ1) cos

(
mπ

ξ3

ζ

)
+

F0(ξ1)

2
, (A 12)

ρ(ξ ) =

∞∑
m=1

ρm(ξ1) cos

(
mπ

ξ3

ζ

)
+

ρ0(ξ1)

2
, (A 13)

where the Fm(ξ1) are as yet unknown functions, and

ρm(ξ1) =
2

ζ

∫ ζ

0

ρ(ξ ) cos

(
mπ

ξ3

ζ

)
dξ3. (A 14)



Variable-density flow in porous media 233

Substituting (A 12) and (A 13) into (A 11) yields

d2Fm

dξ 2
1

−
(

mπ

ζ

)2

Fm − Pe
dFm

dξ1

= −Peρm(ξ1). (A 15)

A solution of (A 15) is given by

Fm(ξ1) = y1(ξ1)

[
c1 +

∫
ρm(ξ ′

1)y2(ξ
′
1)Pe

	(y1, y2)
dξ ′

1

]
+ y2(ξ1)

[
c2 −

∫
ρm(ξ ′

1)y1(ξ
′
1)Pe

	(y1, y2)
dξ ′

1

]
,

(A 16)

where the constants of integration c1 and c2 are determined from the boundary
conditions, and 	(y1, y2) is the Wronski determinant for two independent solutions
of the homogeneous problem (A 15). Such solutions are

y1(ξ1) = exp

(
ξ1Pe

2

)
sinh(Bmξ1), (A 17)

y2(ξ1) = exp

[
− (1 − ξ1)Pe

2

]
sinh[Bm(1 − ξ1)], (A 18)

Bm ≡

√
Pe2

4
+

(
mπ

ζ

)2

, (A 19)

and the corresponding Wronski determinant is

	(y1, y2) = − exp

(
ξ1Pe

2

)
exp

[
− (1 − ξ1)Pe

2

]
Bm sinh(Bm). (A 20)

Substituting (A 17), (A 18) and (A 20) into (A 16) and adjusting the limits of integration
to satisfy the boundary conditions, we obtain

Fm(ξ1) =

∫ 1

0

ρm(ξ ′
1)gm(ξ1, ξ

′
1) dξ ′

1, (A 21)

where

gm(ξ1, ξ
′
1) =

Pe exp

[
(ξ1 − ξ ′

1)Pe

2

]
Bm sinh(Bm)

{
sinh(Bmξ1) sinh(Bm(1 − ξ ′

1)), ξ ′
1 > ξ1,

sinh(Bmξ ′
1) sinh(Bm(1 − ξ1)), ξ1 > ξ ′

1.
(A 22)

Substituting (A 13), (A 14) and (A 21) into (A 12) leads to

ϕ(ξ ) =

∫ 1

0

dξ ′
1

∫ ζ

0

ρ(ξ ′)
2

ζ

∞∑
m=0

cmgm(ξ1, ξ
′
1) cos

(
mπ

ξ3

ζ

)
cos

(
mπ

ξ ′
3

ζ

)
dξ ′

3

=

∫ 1

0

dξ ′
1

∫ ζ

0

ρ(ξ ′)g(ξ , ξ ′) dξ ′
3, (A 23)

where cm = 1/2 for m =0 and cm =1 else. Thus, for ξ ′
1 <ξ1, the Green function g(ξ , ξ ′)

is given by

g(ξ , ξ ′) = exp

[
(ξ1 − ξ ′

1)Pe

2

]
2Pe

ζ

∞∑
m=0

cm cos

(
mπ

ξ3

ζ

)
cos

(
mπ

ξ ′
3

ζ

)

× sinh(Bmξ ′
1)

sinh[Bm(1 − ξ1)]

Bm sinh(Bm)
, (A 24)
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where c0 = 1/2, cm = 1 (m > 0), and

Bm =

√
Pe2

4
+

(
mπ

ζ

)2

. (A 25)

For ξ ′
1 >ξ1, the Green function g(ξ , ξ ′) is obtained from (A 24) by switching the

arguments ξ ′
1 and ξ1.
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